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ABSTRACT 
Spatial autocorrelation statistics are used for description of geographic variation of gene frequencies, 

but the relationship of these indices with the parameters describing the genetic structure of populations 
is not established. A simple relation is derived here between kinship coefficient and a measure of 
spatial autocorrelation, Moran’s I .  The autocorrelation coefficient of gene frequencies at a given 
distance is a direct function of the kinship at that distance, and an inverse function of the standardized 
gene frequency variance, Fst. Under isolation by distance, the expected values of Moran’s I for any 
allele may be calculated by means of Malkcot-Morton function, which predicts an exponential decline 
of genetic similarity in space. This allows comparison of observed gene frequency patterns with the 
patterns that should be caused by interaction of short range migration and random genetic drift. 

NE of the goals of population genetics is to 0 analyze geographical distributions of gene fre- 
quencies, in order to make inferences concerning the 
evolutionary processes that have generated them. Sev- 
eral methodologies have been proposed for the study 
of human gene frequencies, but basically two types of 
approach have been employed in the last decade. 
MENOZZI, PIAZZA and CAVALLI-SFORZA (1978) and 
PIAZZA, MENOZZI and CAVALLI-SFORZA (1 982) evalu- 
ated some indices describing synthetically the geo- 
graphical variation shown by several polymorphisms 
jointly through a multivariate analysis. The second 
approach is the analysis of numerous single gene fre- 
quencies separately by spatial autocorrelation tech- 
niques (SOKAL and MENOZZI 1982; SOKAL, SMOUSE 
and NEEL 1986; SOKAL and WINKLER 1987; BARBU- 
JANI 1987), using what has been called a multivariable 
apfroach (SOKAL 1979). The patterns described are 
consistent with the effects of both selection and non- 
selective processes on the systems considered; more- 
over, hypotheses on the evolutionary forces account- 
ing for such patterns were not always explicitly tested 
in the cited studies. The virtual lack of specifically 
designed statistical techniques (FELSENSTEIN 1982) 
may have been an important reason for that. 

It seems, therefore, that further studies of gene 
frequency distributions aimed at understanding their 
origin should include: (1) computation of indices de- 
scribing the patterns with minimum loss of informa- 
tion; and (2) comparison of such indices with those 
expected under different evolutionary hypotheses. 
CAVALLI-SFORZA (1 966) suggested that under isola- 
tion by distance all genes should display an equal 
fraction of their maximum possible variability, i.e., 
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show equal values of their standardized gene fre- 
quency variance, F,,. Heterogeneous F,, values should 
therefore be regarded as evidence that systematic 
pressures have affected some of the genetic systems 
of interest. Two tests for the heterogeneity of F,, 
values across loci have been proposed (LEWONTIN and 
KRAKAUER 1973; BARBUJANI 1985; for the debate on 
the former, see references in FELSENSTEIN 1982), and 
the latter has been applied to human data (BARBUJANI 
and MILANI 1986). The study of F,, values may, how- 
ever, provide only a general description of gene fre- 
quency diversity. Tests of hypotheses on the evolu- 
tionary processes that account for the observed gene 
frequency distributions require more complex ap- 
proaches; spatial autocorrelation analysis may be suit- 
able for this purpose. 

Spatial autocorrelation is defined as the association 
of the values of one variable with the values of the 
same variable at all other localities (SOKAL and ODEN 
1978a). It gives a detailed description of gene fre- 
quency variation in space, and is independent of pre- 
liminary assumptions about the underlying population 
structure. Different loci are taken into account sepa- 
rately (hence the expression “multivariable” approach, 
rather than “multivariate”) and this bypasses problems 
due to incomplete data matrices, which may affect 
other approaches. The allele frequencies for all sam- 
pled localities are compared to allele frequencies at 
localities within suitably chosen distances, autocorre- 
lation coefficients are computed for each distance 
class, and the resulting correlogram summarizes the 
spatial relationships between populations for that al- 
lele. Inferences are then possible, based on the shape 
of the single correlograms, and on the comparison of 
correlograms computed at various loci (SOKAL and 
ODEN 1978a, b; SOKAL 1979; SOKAL and WARTEN- 
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BERG 198 1). Multivariable analysis may therefore be 
regarded as a repeated application of univariate meth- 
ods. 

SLATKIN (1 985) noted that the independence from 
prior assumptions may turn out to be a drawback of 
this method, if consistency of the observed gene fre- 
quency patterns with a genetical model is to be tested. 
Indeed, the relation of spatial autocorrelation meas- 
ures with the various indices of genetic differentiation 
has not yet been studied (SOKAL and WARTENBERG 
1983), and only recently have some general ideas been 
outlined (e.g., in SLATKIN 1985). Investigation of the 
relationship between spatial statistics and the param- 
eters describing the genetic structure of populations 
seems thus an important research priority (CLEGG and 
EPPERSON 1985). 

In this paper a simple relation is described among 
three quantities: the kinship coefficient, WRIGHT’S Fsr, 
and a widely employed measure of spatial autocorre- 
lation, MORAN’S Z. This allows prediction of the ex- 
pected set of autocorrelation coefficients under a 
model of isolation by distance, assuming exponential 
decline of genetic similarity in space (MAL~COT 1973; 
MORTON 1973b). As a consequence, consistency of 
the observed gene frequency patterns with the pattern 
that should be brought about by interaction of gene 
flow and short-range migration may be tested by 
comparing observed and expected correlograms. This 
appears therefore a first step toward application of 
spatial autocorrelation methods within the framework 
of current population-genetic theories. 

MORAN’S Z 

Spatial autocorrelation methods have been devel- 
oped since the early fifties (MORAN 1950) [for recent 
advances, see RIPLEY (1981) and CLIFF and ORD 
(19Sl)], but their use in biology was pioneered by 
SOKAL and his associates, whose symbolism will be 
used here with minor changes. Let p ( P I ,  p , ,  -, p , )  
be the array of frequencies of one allele in n different 
populations. The geographical sites where the popu- 
lations live are initially plotted on a map, which lies 
either on a plane or on a spherical surface. The points 
on the map may be joined to other population points 
by a particular network (GABRIEL and SOKAL 1969); 
alternatively, all possible connections between pairs of 
localities may be taken into account. Such air distances 
(or great circle distances) are considered as reasonably 
representative of spatial distances for population ge- 
netics studies (CRUMPACKER et al. 1976). There is no 
particular reason to choose them (e.g., as in BARBUJANI 
1987) rather than distances along a connection net- 
work (e.g., as in SOKAL and MENOZZI 1982), except 
that under MORTON’S models, which will be outlined 
more accurately later, kinship values are currently 
regressed on air distances (MORTON 1973b). In choos- 

ing to connect the populations as the crow flies, we of 
course neglect environmental barriers that affect se- 
lection gradients as well as gene flow directions. 

Each autocorrelation coefficient refers to a distance 
class. The choice of the class intervals depends on the 
distribution of the sites of interest, and on the scale 
the investigator wishes to emphasize, but there is no 
established standard criterion. A connectivity matrix 
W, whose rows and columns represent the localities, 
is then constructed for each allele and each distance 
class. Although in some cases W may become complex, 
it is usually a square binary symmetrical matrix. Its 
elements, w+ assume the value of unity when the ith 
andjth localities are separated by a distance falling in 
the class considered, otherwise they are equal to 0. 

Given p and W, an autocorrelation coefficient, Mor- 
an’s Z, is calculated as 

r 1 

e -  J 

where n and w~ have been defined above, pi and p j  are 
the allele frequencies in the ith and j th  population, 
respectively, and j5 is the mean over all populations; 
W is the sum of all w4 for that distance class, i e . ,  twice 
the number of edges connecting localities at that 
distance for a binary W. Under a randomization hy- 
pothesis the expected value is E(Z) = -(n - l)-’, and 
the formulas for its standard error are in SOKAL and 
ODEN (1 978a). 

Spatial autocorrelation coefficients indicate 
whether the values of a variable influence each other, 
and measure the strength of their association. Thus, 
a significant positive autocorrelation indicates that at 
the distance considered allele frequencies are similar, 
i.e., both deviate from the mean in the same direction; 
a significant negative coefficient stands for dissimilar- 
ity: a nonsignificant value means that there is no 
consistent relationship between pairs of allele frequen- 
cies at that distance. In general, for large samples Z 
ranges from - 1 to + 1, the greater the absolute value, 
the stronger the relationship. However, it may occa- 
sionally exceed these limits when particular sets of 
localities are considered (DE JONG, SPRENGER and VAN 
VEEN 1984), hence it is not strictly a correlation 
coefficient (CLIFF and ORD 198 1). The plot of I values 
versus distance is referred to as spatial correlogram of 
that allele. 

THE KINSHIP COEFFICIENT 

CAVALLI-SFORZA and BODMER (197 1) define the 
coefficient of kinship between two individuals A and 
B as the probability that a gene taken at random from 
A, at a given locus, may be identical by descent to a 
gene taken at random from B at the same locus. When 
populations and not individuals are taken into ac- 
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count, genes are compared for identity of the allele 
they carry rather than identity by descent (MORTON 
1973d). If only short-range migration and random 
genetic drift affect a population, that is to say, under 
isolation by distance, variation of kinship may be 
expressed through a formula due to the work of 
MAL~COT (see MAL~COT 1973) and MORTON (MOR- 
TON, MIKI and YEE 1968; MORTON 1973a, b): 

P(d)  = (1 - L)ae-bd + L.  (2) 

Here P(d) is the kinship at distance d ,  e is the base of 
the natural logarithms, and L is an estimate of kinship 
at infinite distance (in practice, it is the lowest value 
in the matrix of observed kinship). For a detailed 
discussion of the meaning and calculation of these 
quantities the reader may refer to MORTON (1973b) 
and WIJSMAN and CAVALLI-SFORZA (1 984). Three 
methods allow estimation of the parameters a and b: 
two of them are predictive (those based on genealogies 
and migration), and one is inductive (bioassay of kin- 
ship from gene frequencies, metric traits, or sur- 
names) (MORTON 1975). As far as bioassay is con- 
cerned, a convenient measure of kinship between two 
populations i a n d j  is 

(3) 

where all the quantities involved are the same as 
defined above for Moran's I. 

The values ofJj may be averaged over several loci, 
leading to a square symmetrical matrix of pairwise 
kinship, which, according to MORTON (1973a), con- 
tains all the relevant information about population 
structure in any generation. The parameters a and b 
of Equation 2 are eventually estimated by regression 
of logarithm of kinship on the geographic distance 
between populations. 

RELATING THE KINSHIP COEFFICIENT TO 
MORAN'S I 

Let us consider the kinship coefficient between 
populations, estimated through bioassay at one locus. 
Let us assume also that k pairs of localities fall in a 
distance class whose lower and upper limits are, say, 
dL and du, respectively, and whose midrange is d. We 
also recall that R is W/2 in (1). The average kinship 
between populations within that distance class is 

where the summation is over the k pairs of populations 
in the distance class of interest. Moran's I ,  for the 

same distance class and with a binary connectivity 
matrix, is 

n wlj(pi - P X P j  - P) 

which may be rewritten as 

(the term wg is neglected, as all pairs of populations in 
that distance class, and only they, have wg = 1 as a 
multiplier). Since (pi - P)(  pj - p) is equal to ( p j  - P)( p i  
- P), 

Now we may call D = Z, ej ( p i  - P)(p j  - p>,  and S the 
sum of squares of p ,  i.e., S = Zi (p i  - P)*; substituting 
in (4) and (6) yields 

(8) f = "1 - m1 
and 

I = nD/kS. (9) 

Then 

Ilf = P(1 - P)n/S. (10) 

If the sample is large, n = n - 1, and S/n = cp' i e . ,  the 
variance of p. Accordingly 

I = f P Q  - P)/ff; (11) 

and, since c'J[ p( 1 - P)] = Fst, then 

I =f /Fst .  (12) 

MORAN'S I, for any allele and at any distance, is 
therefore the ratio of the kinship as estimated for that 
allele and that distance to FSe In populations whose 
genetic structure is accounted for by isolation by 
distance, the kinship coefficient varies in space accord- 
ing to Equation 2. As a consequence, in such popula- 
tions the values of I as a function of distance, for any 
allele A, are expected to be 

E(I(d))A = P(d)Pst,A, (13) 

where Fsts is the standardized variance of allele A 
frequencies, and P(d)  depends only on distance, and 
not on the particular allele studied. This is an exact 
relation if d is the average distance between pairs of 
populations; when it is the midrange of that distance 
class, the relation is approximate. 
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DISCUSSION 

In incompletely isolated populations genetic drift 
tends to cause local genetic differentiation, and gene 
flow between neighboring populations tends to con- 
trast this process. The distribution of gene frequencies 
in an area where neither differential selection nor 
long range gene flow occur results from the balance 
between these two factors. They affect all loci to the 
same degree (SLATKIN 1985, 1987), whereas there is 
no reason to assume that the impact of differential 
selection, if any, should be equal at each locus in- 
volved. Isolation by distance models account for the 
pattern of genetic similarity between populations 
which is expected when genetic drift and short range 
migration determine gene frequency variation (KI- 
MURA and WEISS 1964; MAL~COT 1973; MORTON 
1973a, b). In this case, a unique function, Equation 2, 
describes the decline of kinship with distance. In sev- 
eral regions the values of CP have actually been shown 
to decrease exponentially as the distance between 
sampled populations iccreases (MORTON 1982). 

Under isolation by distance the expected autocor- 
relation of gene frequencies is therefore a function of 
two factors: the mode of decline of genetic related- 
ness, which is expressed by the parameters a, b and L 
of MAL~COT-MORTON equation, and does not depend 
on the marker considered; and FSt, which assumes a 
particular, measurable value for each allele. This ap- 
plies to any selectively neutral gene. The values on 
the main diagonal of the matrix of pairwise kinship 
should not contribute to estimation of the parameters 
a and b in MAL~COT-MORTON function, since they do 
not contribute to calculation of MORAN’S I. 

At neutral loci, thus, MORAN’S I should decline 
monotonically with distance, paralleling the decrease 
of kinship and tending asymptotically to CP(m)/Fst = L/ 
FSt. When, at distance close to 0, P(d) = F,, (WRIGHT 
1969, pp. 294-295; CAVALLI-SFORZA and BODMER 
1971, p. 399), then Z(d) tends to 1. An exponentially 
decreasing profile of the correlograms has actually 
been observed in the analysis of gene frequency pat- 
terns simulated by computer under isolation by dis- 
tance (SOKAL and WARTENBERG 1983). 

If the frequencies of one allele evolved under iso- 
lation by distance, then the correlogram of that allele 
is predictable by using Equation 13, where the theo- 
retical values of kinship, P(d), have been estimated on 
the basis of either genealogies, or migration data, or 
surnames, or a set of selectively neutral genes. Devia- 
tions from this expected set of values would support 
non-neutrality of the allele. As an example, in Table 
1 the kinship parameters estimated in two human 
populations are employed for prediction of autocor- 
relation at various distances for two erythrocyte mark- 
ers. 

As yet, however, the possible applications of the 

TABLE 1 

Expected values of MORAN’s I for two markers in two human 
populations 

POPULATION: Brazil 
BIOASSAY OF KINSHIP: from isonymy (IMAIZUMI and MORTON 

1969) a = 0.0231 b = 0.0073 L = 
-0.00 12 

Expected I Expected I 
Distance (km) Kinship (Ada) ( A N  

100 0.0099 0.5438 0.4379 
200 0.0041 0.2253 0.1815 
300 0.0014 0.0769 0.0620 
400 0.0001 0.0026 0.0021 
500 -0.0006 -0.0325 -0.0262 

Infinite -0.001 2 -0.0659 -0.053 1 

POPULATION: Po delta, Italy 
BIOASSAY OF KINSHIP: From gene frequencies (BARRAI et al .  

1983) a = 0.0142 b = 0.0380 L = 
-0.0053 

20 0.0014 0.0756 0.0619 
40 -0.0022 -0.1 197 -0.0973 
60 -0.0038 -0.21 10 -0.1681 
80 -0.0046 -0.2536 -0.2035 

100 -0.0050 -0.2737 -0.2212 
Infinite -0.0053 -0.2912 -0.2345 

The Fs4 estimates, based on European and Asian populations, are 
0.0182 for Adenosine deaminase (Ada)  and 0.0226 for Adenylate 
kinase (Ak) (BARBUJANI and MILANI 1986). a ,  b and L are the 
parameters of MAL~COT-MORTON function. 

expression (13) are limited by at least two unsolved 
statistical problems. First, only methods for testing 
single correlograms versus their null expectations ex- 
ist (ODEN 1984), whereas no method has been estab- 
lished for comparison of two correlograms. While the 
relation (1 3 )  may thus be used for comparison of pairs 
of expected and observed I values, and may allow 
detection of sharp deviations from the spatial pattern 
predicted by MALECOT and MORTON’S model, it can- 
not at this time be applied for rigorous testing of the 
hypothesis that the frequencies of one allele have 
evolved under isolation by distance. 

Second, kinship coefficients are generally calculated 
on the same gene frequencies on which spatial auto- 
correlation analysis is carried out. In this way, the 
same data would be used both for generating a hy- 
pothesis and for testing it, which is surely incorrect 
and would affect, to an unpredictable but wide extent, 
the reliability of subsequent inferences. 

A third class of statistical problems is more easy to 
cope with. As previously remarked, autocorrelation 
studies are often based on a connection network 
rather than interpopulation air distances. However, 
this does not affect the relationships evaluated above, 
if the same network is taken into account in construct- 
ing also the matrix of geographic distances employed 
in estimation of a and b. Besides, the above relations 
hold true for autocorrelation of gene frequencies 
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involving a binary symmetrical matrix W. It is possi- 
ble, but not effortless, to accommodate more complex 
weight matrices. 

When kinship is bioassayed from gene frequencies, 
the slope of the MAL~COT-MORTON function may be 
affected by mutation and selection (see e.g., BARRAI et 
al. 1984; BARBUJANI and CANELLA 1987). Selective 
pressures, in particular, have a substantial influence 
on gene frequency diversity, and this may lead to 
incorrect assessment of the overall genetic similarity 
between populations (CAVALLI-SFORZA 1984; WIJS- 
MAN and CAVALLI-SFORZA 1984). Such an error will 
in turn cause improper evaluation of the expected 
correlograms when Equation 13 is applied. In other 
words, if the expected correlogram includes the effect 
of selection, comparing it with the correlogram ob- 
served for a given allele no longer tests the consistency 
of that allele’s frequencies with those expected under 
isolation by distance. Thus, observed autocorrelation 
coefficients should be compared with expected values 
computed from a kinship matrix including only neu- 
tral genes. Cross comparisons between loci whose 
neutrality is controversial or unknown are a possible 
working solution. Alternatively, the use of surnames 
(YASUDA et al. 1974) or migration matrices (MORTON 
1973c) for bioassay or prediction of kinship, respec- 
tively, can be suggested. 

Marital migration data, in particular, allow con- 
struction of a kinship matrix which is surely unaffected 
by selective processes. As a consequence, systematic 
pressures over some of the loci of interest should have 
an impact only on the observed correlograms, and 
would not affect the expected ones. This would also 
solve the second statistical problem cited above, since 
kinship and autocorrelation coefficients would be 
evaluated on the basis of two independent sets of data. 
Accordingly, the use of MAL~COT-MORTON function 
for prediction of spatial autocorrelation seems possible 
especially in studies dealing with fairly small geograph- 
ical areas, in agreement with the view put forward in 
the first works on isolation by distance (YASUDA and 
MORTON 1969). 
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